SUMS OF THE FORM 1 / x k 1 + · · · + 1 / x kn MODULO A PRIME
نویسنده
چکیده
Using a sum-product result due to Bourgain, Katz, and Tao, we show that for every 0 < 2 ≤ 1, and every integer k ≥ 1, there exists an integer N = N(2, k), such that for every prime p and every residue class a (mod p), there exist positive integers x1, ..., xN ≤ p satisfying a ≡ 1 x1 + · · ·+ 1 xN (mod p).
منابع مشابه
Binomial Character Sums modulo Prime Powers
We show that the binomial and related multiplicative character sums p ∑ x=1 (x,p)=1 χ(x(Ax +B)), p ∑ x=1 χ1(x)χ2(Ax k +B), have a simple evaluation for large enough m (for m ≥ 2 if p ABk).
متن کاملUniversal Mixed Sums of Squares and Triangular Numbers
In 1997 Ken Ono and K. Soundararajan [Invent. Math. 130(1997)] proved that under the generalized Riemann hypothesis any positive odd integer greater than 2719 can be represented by the famous Ramanujan form x 2 + y 2 + 10z 2 , equivalently the form 2x 2 + 5y 2 + 4T z represents all integers greater than 1359, where T z denotes the triangular number z(z + 1)/2. Given positive integers a, b, c we...
متن کاملSums of Products of Congruence Classes and of Arithmetic Progressions
Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a+im : i ∈ N0}. For positive integers a, b, c, d,m the sum of products set Rm(a)Rm(b)+Rm(c)Rm(d) consists of all integers of the form (a+im)(b+jm)+(c+km)(d+lm) for some i, j, k, l ∈ Z}. It is proved that if gcd(a, b, c, d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class R...
متن کاملExplicit values of multi-dimensional Kloosterman sums for prime powers, II
For any integer m > 1 fix ζm = exp(2πi/m), and let Z ∗ m denote the group of reduced residues modulo m. Let q = pα, a power of a prime p. The hyper-Kloosterman sums of dimension n > 0 are defined for q by R(d, q) = ∑ x1,...,xn∈Z∗ q ζ x1+···+xn+d(x1···xn) q (d ∈ Zq), where x−1 denotes the multiplicative inverse of x modulo q. Salie evaluated R(d, q) in the classical setting n = 1 for even q, and...
متن کاملOn the Density of Integer Points on Generalised Markoff-hurwitz Hypersurfaces
We use bounds of mixed character sums modulo a square-free integer q of a special structure to estimate the density of integer points on the hypersurface f1(x1) + . . . + fn(xn) = ax k1 1 . . . x kn n for some polynomials fi ∈ Z[X] and nonzero integers a and ki, i = 1, . . . , n. In the case of f1(X) = . . . = fn(X) = X 2 and k1 = . . . = kn = 1 the above hypersurface is known as the Markoff-Hu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004